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2. CURRENT AND ANTICIPATED RESULTS ANTICIPATED BY THE END OF INITIAL GRANT
PERIQD

The ultimate objective of our research is to provide algorithms, and
experimental digital computer programs which implement the constraint method
for three dimensional analysis, and to demonstrate the effectiveness of the
method in three dimensions. Since the approaches to be used in deriving
these algorithms are based on similar approaches for two dimensional ana-
lyses, the first part of the initial grant period was spent in completing the
formulation of algorithms in two dimensions so as to have a firm foundation
for the more complex three dimensional work. Also in response to a suggestion
by Dr. V. B. Venkayya of the Air Force Flight Dynamics Laboratory at Wright-
Patterson AFB, the plate bending element of the Constraint Method is being
developed further. The results obtained and/or anticipated for two dimen-
sional analysis may be subdivided into three classes:

1). Results which apply to problems requiring only C° continuity

(C° displacement fields, problems in plane elasticity)

2). Results which apply to problems requiring both C° and Cl conti- )

nuity (coupled C° and Cl displacement fields)

3). Results which apply to problems requiring only C1 continuity

(Cl displacement fields, plate bending problems)

2.1 C° Displacement Fields (plane elasticity)

It has been shown in (6, 7, 8, 9] that elemental arrays may be effi-
ciently generatad through the use of "precomputed" arrays - - that is arrays
which are computed once, stored on permanent file, and then reused in all
subsequent applications of the prcgram. The new work done by the principal
investigator and his collaborators has two objectives: the first is to
show how the hierarchal C° elements (described in 1.2) for a quadratic functicnal

may be formulated using precomputed arrays thus yielding a finite element
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technique which is especially suited to problems with local rapid variation
of the function to be approximated. In particular, formulas for two-dimen-
sional (hierarchal) element arrays for arbitrary polynomial order are derived,
based on precomputed arrays. The second objective is to apply the combined
approach of hierarchal elements and precomputed arrays to decide if a computed
result has "converged". A common practice in finite element analysis is to
solve a problem several times using sSuccessively required meshes i.e. to
apply the procedure for h-convergence. If successive analyses agree then it
is usually assumed that the finite element approx;mation is accurate. This
procedure can be computationally expensive when several highly refined meshes
are used. An alternative procedure is to use p-convergence, which, as
pointed out in 1.1, has a faster rate of convergence to the true displacements.
The computaticnal effectiveness of the p-convergence procedure is demonstrated
numerically using hierarchal elements and precomputed arrays.

Detailed formulas are given for calculation of stiffness matrices and
for calculation of polynomial coefficients from nodal variables. Hierar-
chal nodal variables are presented together with some of the favorable
consequences of using hierarchal nodal variables. Computation times for
stiffness matrices are given in terms of equivalent time units (e.t.u.) for
different methods. In Table 1 average Central Processor Unit (CPU) times
are given for computing element stiffness matrices for several different
problem types and polynomial orders p. For comparison purposes the compu-
tation time for an eight degree of freedom isoparametric quadrilateral using
the general structural analysis program SAPIV of Bathe et al [10] has been
included in the table. The time required to generate this 8 x 8 matrix is
seen to be comparable to that required for the 45 x 45 hierarchal matrix of
the torsion problem. This means that the constraint nmethod allows many more

degrees of freedom for the same computer cost.
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Various numerical examples are analyzed in detail. One such example
is a Cantilever Beam with Uniform lLoad, which we now describe.

2.1.1 An Example: Cantilever Beam with Uniform Load

It is known that in finite element problems where roundoff error is

significant, an increase in the polynomial order may be advantageous

(11]. This suggests that employing hierarchal elements with p-convergence
may make it possible to use "poorly-shaped" elements -~ that is, elementsa
of such proportions as would lead to ill-conditioned equations if low
order polynomials were used. To test this idea, we conaider the plane
stress cantilever beam shown in Fig. 4, loaded with the edge stresses

g

0 ,d,2
Ty =3 (@ for 0 < x <L, y=d/2,
20,y o.d
0 0 2y, 2
G =T~ 0 T =i [1- D71, for x = 0, -d/2 < y ¢ d/2,

The beam is constrained against rigid body motion through the boundary

conditions u = v = 0 for x =y = 0, and u = 0 for x = 0, y = =-d/2, The

five-element mesh cmployed in the analysis is shown in Fig., 4. Table 2
contains the displacements (in inches) at point A and the potential
energy " calculated for the case of a deep beam (L = 2.0 in., d = 1.0 in.)
with elastic modulus of 2.8 x 106 psi, and a slender beam (L = 1.5 in,,

d = 0.1 in.) with elastic modulus of 2.8 «x 10“ psi. Poissca's ratio wae
taken as 0.3 and the thickness as unity. The hierarchal elementa exhibir
convergence in both cases, even though the ratio of height to width ia
1:30 for two of the elements in the mesh for the slender beam. Some

numerical difficulty did occur, however, when an attempt was made to

-i
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solve the slender beam problem for values of L = 15 in. and d = 1.0 in.
Since a simple scaling of these dimensions led to accurate results, it
may be that the difficulty was not due to numerical ill-conditioning,
but instead was caused by the technique used to impose the boundary
condirions - that is, the artificial stiffness coefficients introduced

on the diagonal of the global stiffness matrix were not large enough.

For comparison purposes, Table 2 also contains values calculated
by Mason and Case (12] using a fine mesh of low order elementa. Since
no analytical solution exists for the beam under the givea loading,
these authors validated their finite element model by applying it to a
slightly different problem - involving the same beam, but a different
loading - for which an analytical solution exists. The finite element
and theoretical results for the displacements were found to agree to

within 0.4%. In the present example, the results from ' [12] and from

the hierarchal element solution were also found to agree to within 0.4%,
The hierarchal element results may be considered closer to the exact
values, 1if the good convergence of the computed values observed in Table
2 can be taken as an indicator of accuracy. '
Table 3 contains CPU times for the equation solver for the hierarchal

element approach. '

2.2 Coupled ¢° and Cl displacemnt fields ]

In this work the results of Kratochvil et al in (6] are generalized H
to problems with three independent displacement fields. An essentlal aspect
of this approach is to transform a triangular element T in the x-y plane

into a standard triangle i with vertices at the origin and at a unit distance

—
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along the horizontal and vertical axes. Such a transformation is shown
below where { and n represent coordinates in the plane of the standard
triangle and x and ; are local coordinates for the element with the first
vertex of the element coinciding with the origin. The other two vertices
and also the three edges are numbered in counter-clockwise order as shown.
The justification for using the standard triangle is that integrations and

matrix inversions are performed with respect to the standard triangle. Thus

g s

(o,

)

(r,0) €

they need be done only once and the results are stored and then used in

all future applications of the program. Computation of the element stiffness
matrix is thus reduced to computing a linear combination of a small number

of precomputed matrices followed by pre- and post-multiplication by block
diagonal matrices. The number of precomputed matrices which must be stored

are considerably reduced by choosing hierarchal nodal variables.

Transformation to Standard triangle
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23 Cl displacement fields (plate bending problems)

It was suggested by Dr. V. B. Venkayya (of the Analysis and Cptimi-
zation Group, Structures Division, Air Force Flight Dynamics Laboratory,
Wright-Patterson Air Force Base) in a letter dated 12 December 1975 that
further development of plate bending elements would be useful in order to
realize the full potential of the constraint method. Accordingly, a
sophisticated plate bending element, incorporating a complete pth order
polynomial with p> 5 and corrective rational functions is now being
programmed and tested. We now describe some of this work.

It is well known (see [13], for example) that exactly conforming
(even at vertices) C1 displacement fields cannot be formed merely by freely
assembling finite elements. There are certain additional constraint equa-
tions which must be satisfied at vertices. The simplest form of these
constraint equations has been given by Peano in (1l4], where a specially
devised assembly procedure is presented which autcmatically enforces the
constraint equations. Alternative methods for enforcing exact conformity
when using displacement fields of arbitrary polyncmial order p are:

a). creation of super-elements (or macro-elements) of arbitrary order

P>5. In these super-elements constraints are satisfied within
each super-element leaving nodal variables on the boundary to be

freely assembled (14].

b). Use of penalty functions to enforce constraints [14]
c). Supplementing pﬁﬁ order polynomials with newly constructed

corrective raticnal functions. This destroys the analytic
character of the approximation at the vertices but permits free

assembly of elements without enforcing constraints [14, 15].

A ek




The last alternative is the one which seems most promising. An algorithm
has been developed for a C1 (exactly) conforming triangular element

which contains complete polynomials of order p> 5 and rational corrective
functions. A typical element, of order p = 5, together with nodal variables

is shown below.

8 - by
Wy a, + b

i Wik
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For the quintic cl element there are 24 independent nodal variables. The
shape functions for each nodal variables have been given explicitly in
(14, 15] in terms of triangular ccordinates. The shape functicns corres-
ponding to second order tangential-normal derivatives at the vertices are
the rational functions given below: all other shape functions are poly-

nomials.
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t is important to observe that although rational functions are used

in the basis, all terms which appear in the elemental stiffness matrix
can be integrated explicitly without recourse to numerical quadrature.
This was proved in (16]. An algorithm based on a hierarchical family of
1

C elements using corrective rational functions has been programmed and

L™

is now being tested on numerical examples.
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In addition work is proceeding on the develovment of three dimensional

finite elements for use in the constraint method as follows.

2.4 Nodal Variables and Shape functions for a hierarchical family
of solid tetrahedronal elements

A table of basis functions for a triangular (two dimensiona ) 1
hierarchical family was given in [14]. This is now being generalized to
a table of basis functions for a tetrahedronal (three dimensional) ;
hierarchical family. From this new table it will be possible to generate
shape functions for solid C° elements and (if needed) corresponding nodal
variables.

2.5 Papers orepared for publication and presentation at conferences

The work described in 2.1-2.4 will be reported to the professional

community in the following papers to be submitted for publication in

journals.

1). "Hierarchal Finite Elements and Precomputed Arrays", by
Mark P. Rossow and I. Norman Katz, (to be submitted to
Int. J. for Num. Method in Engr.).

2). "“Nodal Variables for Conforming Finite Elements of Arbitrary -
Polynomial Order"”, by I. Norman Katz and Mark P. Rossow, (to
be submitted to Computers and Mathematics, with Applicatiaons).

: s ik ) by
3). "A family of C triangular elements containing complete poly-

nomials of arbitrary order, for apolication to problems in plate
bending"”, I. Norman Katz, Barna A. Szabo and Olive Liu, (in
preparation).

The following papers have been accepted for presentation at conferences.

4). "Hierarchical Approximation in Finite Element Analysis", by
I. Norman Katz, International Symposium on Innovative Numerical
Analysis in Applied Engineering Science, Versailles, France,
May 23 - 27, 1977.

S5). "Efficient Generation of Hierarchal Finite Elements Through the
Use of Precomputed Arrays'", by M. P. Rossow and I. N. Katz,
Second Annual ASCE Engineering Mechanics Division Specialty
Conference, North Carolina State University, Raleigh, NC
May 23 - 25, 1977.
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"Cl Triangular Elements of Arbitrary Polynomial Order Containing
Corrective Rational Functions", by I. Norman Katz, SIAM 1977
National Meeting, Philadelphia, PA, June 13 =18, 1977.
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Table 1

Computation Time for Element Stiffness Matrices

Problem Fields P Size of CPU Time
Type Matrices in e.t.u. j
b
Plane stress Two displacements 5 42 x 42 2.1 @
(energy method) |
Torsion Prandtl stress 8 45 x 45 1.3 ?
(energy method) function
Plane stress Two displacemente 3 50 x50 3.4 1
(least squares) and three stresses
Plane stress Two displacements 1™ 8 x 8 1.2 ?
(energy method) f
SAPIV [10]
Plate bending One displacement 5b 18 x 18 0.9° t
(energy method) i«
Ref. 7 E
i
j
|
a Bilinear ‘|

b Incomplete fifth order polynomial

e Matrix multiplication routine used in defining an e.t.u. was not L
specified h
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Table 2

Results for Cantilever Beam Problem

L =2, d=l L=1.5, d=.1
? DOF vef o 108 v o106 r.10
3 59 -8.683437 -3.6164721 -4,027224  ~1,7574485
4 99 -8.757509 -3.6227009 -4.,033644 ~-1,8010797
5 149 -8.760231 =3.6227475 -4,033650 ~1,8010797
6 209 ~8.764954 -3.6227711 -4,033656 ~1.8010798
7 279 -8.764951 -3.6527736
8 359 -8.765809 -3.6227744
1152 Bilig:;f iﬁfmencs 2647 -8.7494 o = %
2160 Bilinear elements ,.,q o . -4,0187 o

Ref, 12




Table 3

CPU Time Required to Sglve Equations
for Deep Cantilever Beam Problem ' ]

CPU Time 3
p Ni 1!\ ..:.“o ;‘
b
3 62 20 ,
4 102 a6
5 152 56 1
;
6 212 96 a
7 282 174
8 362 298
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INTERACTIONS

On September 8, 1977, the Principal Investigator, I. Norman
Katz, jointly with Barna A. Szabo presented a seminar on their

current results at the Air Force Flight Dynamics Laboratory, Wright-
Patterson Air Force Base. The title of the talk was:

"Advanced Stress Analysis Technology'"

An abstract of the talk is enclosed with this report., Forty to
fifty people attended the seminar.

The principal contact at Wright-Patterson was Dr. V. N. Ven-
kayva, Aerospace Engineer, Analysis and Optimization Branch, Struc-
tures Division, Other people with whom we spoke personally were: Dr,
N. S. Khot, Dr. L. Berke, Dr. D. W. Quinn and Mr. N. D. Wolf of the
Analysis and Optimization Branch; Dr. J. Gallagher and Mr. R. M. Bader
of the Structural Integrity Branch. -
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I. Norman Ratz

Departzent of Systams Science & Mathematics
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ABSTRACT

tes

With cne exception, all finite element software sr¥steas have elemeant
libraries in which the approxizacion properties of elements are frczen.
The user controls only the nuzber and distribution of finita elexents.
The exception is an experizental software systen, developed at Washington

University. This system, called COMET-X, employs conformizg elements

based on complete polynomials of arbitrary order. The elements are hierar-

chic, i.e. the stiffaess matrix of each element is embedded in cthe stiff-
ness mactrices of all higher order elecents of the same kind. The user con-
trols not only the number and distribution of finita elements but their
approximation properties as well. Thus convergence can dDe achieved on

ixed xesh. This provides for very efficient and highly accurate approxi-
2ation and a new method for computing stress intensity factors ian linear
elastic fracture zechanics. The theoretical developments are outlined,
nuaerical exacples are given and the concept of an advanced self-adaptive

finite element software system is presented.




